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Figure 1: CT scan of stag beetle (832x832x494): (a) DVR of original grid. (b) D2VR of projection-based volu-
metric data (64 projections, each projection with a resolution of 642). (c) DVR of a 1283 grid (d) DVR of a 643

grid. Grids are reconstructed from 64 filtered projections, each projection with a resolution of 642.

Abstract

Volume-rendering techniques are conventionally classi-
fied into two categories represented by direct and in-
direct methods. Indirect methods require to transform
the initial volumetric model into an intermediate geo-
metrical model in order to efficiently visualize it. In
contrast, direct volume-rendering (DVR) methods can
directly process the volumetric data. Modern 3D scan-
ning technologies, like CT or MRI, usually provide data
as a set of samples on rectilinear grid points, which are
computed from the measured projections by discrete to-
mographic reconstruction. Therefore the set of these
reconstructed samples can already be considered as an
intermediate volume representation. In this paper we
introduce a new paradigm fordirect direct volume ren-
dering (D2VR), which does not require a rectilinear grid
at all, since it is based on an immediate processing of
the measured projections. Arbitrary samples for ray
casting are reconstructed from the projections by using

∗e-mail: cseb@iit.bme.hu
†e-mail:{rautek|grimm|bruckner|groeller}@cg.tuwien.ac.at

the Filtered Back-Projection algorithm. Our method re-
moves an unnecessary and lossy resampling step from
the classical volume rendering pipeline. Thus, it pro-
vides much higher accuracy than traditional grid-based
resampling techniques do. Furthermore we also present
a novel high-quality gradient estimation scheme, which
is also based on the Filtered Back-Projection algorithm.
Finally we introduce a hierarchical space partitioning
approach for projection-based volumetric data, which is
used to accelerate D2VR.

CR Categories: I.4.5 [Image Processing]:
Reconstruction—Transform Methods; I.4.10 [Image
Processing]: Volumetric Image Representation; I.3.7
[Computer Graphics]: Three-dimensional Graphics and
Realism

Keywords: Volume Rendering, Reconstruction, Fil-
tered Back-Projection
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1 Introduction

Modern 3D scanning technologies, like Computed To-
mography (CT) or Magnetic Resonance Imaging (MRI),
usually provide data values on rectilinear grid points.
These data values are computed from measured pro-
jections by discrete tomographic reconstruction [19, 6].
The set of the reconstructed data values (or samples) can
be interpreted as a discrete representation of the under-
lying continuous phenomenon. In order to authentically
visualize the original continuous signal, it has to be ac-
curately reconstructed from the discrete samples (note
that such a signal reconstruction is differentiated from
discrete tomographic reconstruction).
From a signal-processing point of view, the original sig-
nal can be perfectly reconstructed from discrete samples
if it is band-limited and the sampling frequency is above
the Nyquist limit [16]. Theoretically the perfect contin-
uous reconstruction is obtained by convolving the dis-
crete volume representation with thesinc function. The
sinc function is considered to be the best reconstruction
kernel, since it represents an ideal low-pass filter. In
practice, however, it is difficult to convolve a discrete
signal with thesinc kernel, because of its infinite sup-
port. Therefore practical reconstruction filters either ap-
proximate it or truncate it with an appropriate window-
ing function [11, 20]. Moreover, real-world signals can
hardly be considered band-limited. As a consequence,
practical resampling results in a loss of information.
Figure 2 shows the signal-processing approach of the
traditional volume rendering pipeline (follow the red
line). The first step is the discrete tomographic recon-
struction of a rectilinear volume representation from the
measured projections. Although there exist different
algorithms for tomographic reconstruction, one of the
most popular techniques is the Filtered Back-Projection
algorithm. It first performs high-pass filtering on the
measured projections and afterwards the samples at rec-
tilinear grid points are computed by back-projecting the
filtered signals. As the projections are acquired by mea-
suring accumulated attenuation by a limited number of
sensors, they are actually available as discrete represen-
tations of continuous projection functions. Therefore
high-pass filtering is performed in discrete frequency
domain, so the result is also a discrete function. In
the back-projection phase, however, the rectilinear grid
points are not necessarily projected exactly onto the dis-
crete samples of the filtered projections. Therefore for
back-projection resampling is necessary, which results
in thefirst loss of information in the pipeline.
The obtained rectilinear volume can be visualized by
different rendering techniques. Using indirect meth-
ods, like the classical Marching Cubes algorithm [9],

an intermediate geometrical model of an isosurface is
constructed from the volumetric model. This geomet-
rical model is then interactively rendered by, for exam-
ple, conventional graphics hardware. In contrast, Direct
Volume Rendering (DVR) approaches, like ray casting
[7] or splatting [24, 25] directly render the volumet-
ric model without any intermediate representation. In
both cases an interpolation technique is applied to de-
fine data values between the rectilinear grid points. In
other words, a resampling of the discrete volume rep-
resentation is required. This resampling results in the
secondloss of information in the traditional pipeline.

In order to minimize the loss of information we propose
to modify the traditional volume-rendering pipeline by
simply removing an unnecessary resampling step (fol-
low the green line in Figure 2). To render the underlying
continuous phenomenon, data samples at arbitrary sam-
ple points need to be defined, and for shading computa-
tion the corresponding gradients need to be determined.
As it will be shown, both tasks can be solved using di-
rectly the filtered projections. This eventually leads to
an alternative projection-based volume representation.
Thus, there is no need to compute samples at regular
grid points by discrete tomographic reconstruction, and
as a consequence one resampling step (see Figure 2) is
unnecessary. Traditional direct volume-rendering meth-
ods rely on such an intermediate grid representation, so
in this sense they are in fact indirect. In contrast, we
present DVRdirectly from the measured raw data. To
distinguish from the common DVR the novel approach
is referred to asD2VR (pronunciation: [di-skwerd vi
ar]).

In Section 2 we review previous work related to discrete
tomographic reconstruction and volume resampling. In
Section 3 our novel volume-rendering approach is in-
troduced, where it is explained how to reconstruct data
values and gradients directly from the filtered projec-
tions by using the Filtered Back-Projection algorithm.
Furthermore, in Section 3.3, we also present a hierar-
chical space partitioning approach for projection-based
volumetric data. Section 4 describes the implementa-
tion. Section 5 reports the results. Finally in Section 6
the contribution of this paper is summarized and ideas
for future work are given.

2 Related Work

In most of the practical volume-rendering applications,
especially in 3D medical imaging, the input data is usu-
ally generated from measured projections by using to-
mographic reconstruction [19, 6, 15]. The set of projec-
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Rectilinear Grid

2. Resampling

DVR

D²VR

1. Resampling

Resampling

Figure 2: Data processing work flow of projection- and grid-based volume rendering. The red line corresponds to
the traditional volume rendering pipeline. It requires two resampling steps in order to visualize the data. First an
intermediate grid is resampled and then this grid is resampled again for rendering. The green line corresponds to
the projection-based volume rendering pipeline; the lossy first resampling step is avoided.

tions is referred to as the Radon transform of the orig-
inal signal. Therefore the tomographic reconstruction
is, in fact, the inversion of the Radon transform. The
inversion can be performed by using the classical Fil-
tered Back-Projection [2] algorithm, which is based on
the Fourier projection-slice theorem [6, 10]. Although
there exist alternative tomographic reconstruction tech-
niques like algebraic or statistical ones, Filtered Back-
Projection is still the most popular method used in com-
mercial CT scanners.

The output of tomographic reconstruction is a discrete
(or sampled) representation of the underlying continu-
ous phenomenon. The samples are conventionally gen-
erated on rectilinear grid points. The rectilinear grid has
several advantages. For example, the sampled signal can
be represented by 3D arrays, implicitly storing the loca-
tions of the samples. Furthermore, the neighborhood
of a certain sample can be efficiently addressed, which
is important for many volume-processing or volume-
rendering algorithms.

Nevertheless, in order to render the underlying continu-
ous 3D function, data values need to be defined also be-
tween the rectilinear grid points. Thesinckernel as ideal
reconstruction filter is impractical because of its infinite
extent. In practice it is approximated by filters of finite
support [11, 20]. Generally, the wider the support of the
reconstruction filter, the higher the quality of the recon-
struction. On the other hand, the wider the support of
the filter, the higher the computational cost of a spatial-
domain convolution. Therefore several researchers an-

alyzed different reconstruction filters, both in terms of
accuracy and computational cost [12, 11, 13, 14]. As
the practical filters only approximate the ideal low-pass
filter they result in either aliasing or smoothing [11],
which can be interpreted as a loss of information.

For frequent resampling tasks, like rotation, or up-
sampling, frequency-domain techniques can be alterna-
tively applied [8, 1, 3, 4, 21, 22]. In frequency do-
main, it is exploited that a computationally expensive
spatial-domain convolution is replaced by a simple mul-
tiplication. Although the frequency-domain resampling
methods generally provide higher accuracy than spatial-
domain methods do, they assume that the new samples
to be computed are also located at regular grid points.

In order to avoid a lossy resampling step in the tradi-
tional volume-rendering pipeline, we directly use the to-
mographic inversion in order to reconstruct the underly-
ing function at arbitrary sample positions. Therefore we
do not generate an intermediate rectilinear volume rep-
resentation, but we directly process the filtered projec-
tions as an alternative volume representation. Using this
gridless or projection-based volume-rendering approach
as a new paradigm, the same accuracy can be ensured at
all the sample positions. In contrast, using the tradi-
tional grid-based approach, accurate samples are avail-
able only at the grid points, while the accuracy of inter-
mediate samples depends on the quality of the applied
imperfect reconstruction filter.
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3 D2VR

We present D2VR based on a raycasting approach. In
order to perform raycasting the underlying 3D volumet-
ric function needs to be reconstructed at arbitrary resam-
pling locations. In case the data is given on a rectilinear
grid the reconstructed function value is computed from
a close neighborhood of samples as shown in Figure 3a.
In contrast to that, for raycasting directly performed on
the filtered projections the reconstructed function value
is computed from the filtered projections at the corre-
sponding positions, see Figure 3b. Furthermore, gradi-
ents at these resample locations need to be determined
in order to perform shading. The whole reconstruction
mechanism is described in the following.

(a) (b)

Resample location
Grid Projections

Figure 3: (a) Resampling along a ray on rectilinear vol-
umetric data. (b) Resampling along a ray directly from
the filtered projections

3.1 Data reconstruction

Data reconstruction from projection-based volumetric
data requires Filtered Back-Projection. For simplicity
we illustrate the Filtered Back-Projection in 2D based
on a computed tomography scanning process using or-
thographic projection. Parallel projections are taken by
measuring a set of parallel rays for a number of differ-
ent angles. A projection is formed by combining a set
of line integrals. The whole projection is a collection
of parallel ray integrals as is given byPθ (t) for a con-
stantθ , see Figure 4. The line integrals are measured by
moving an x-ray source and detector along parallel lines
on opposite sides of the object.

The Filtered Back-Projection can be derived, using the
Fourier projection-slice Theorem as follows:

The density functionf (x,y) can be expressed as:

f (x,y) =
∫ ∞

−∞

∫ ∞

−∞
F(u,v)ej2π(ux+vy)dudv

where F(u,v) denotes the two-dimensional Fourier
transform of the density functionf (x,y). By moving
from a cartesian coordinate system in the frequency do-
main to a polar coordinate system, i.e.,u = wcosθ ,
v = wsinθ , anddudv= wdwdθ , we obtain:

f (x,y) =
∫ 2π

0

∫ ∞

0
F(w,θ)ej2πw(xcosθ+ysinθ)wdwdθ

If we considerθ from 0 to π, the integral can be split as
follows:

f (x,y) =
∫ π

0

∫ ∞

0
F(w,θ)ej2πw(xcosθ+ysinθ)wdwdθ

+
∫ π

0

∫ ∞

0
F(w,θ +π)ej2πw(xcos(θ+π)+ysin(θ+π))wdwdθ

SinceF(w,θ + π) = F(−w,θ), the above expression
can be written as:

f (x,y) =
∫ π

0

[∫ ∞

−∞
F(w,θ) |w|ej2πwtdw

]
dθ

wheret = xcosθ +ysinθ . By substitutingSθ (w) for the
two-dimensional Fourier transformF(w,θ) the above
integral can be expressed as:

f (x,y) =
∫ π

0

∫ ∞

−∞
Sθ (w) |w|ej2πwtdwdθ

According to the Fourier projection-slice theoremSθ (w)
is the Fourier transform ofPθ (t). Let us define:

Qθ (t) =
∫ ∞

−∞
Sθ (w) |w|ej2πwtdw (1)

which is the inverse Fourier transform ofSθ (w) · |w|.
As multiplication in frequency domain corresponds to a
convolution in spatial domain, according to Equation 1,
Qθ (t) is obtained by high-pass filtering the measured
projectionPθ (t). Other filters to reduce artifacts result-
ing from reconstruction can be applied, see [6].

In practice, the 2D density functionf (x,y) is discretely
approximated by:

f (x,y)≈ f̃ (x,y) =
π
K

K

∑
i=1

Qθi (xcosθi +ysinθi) (2)

whereQθi are the filtered projections. Thus, according
to Equation 2 the density function can be reconstructed
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from a fixed number of projections. The Filtered Back-
Projection algorithm is conventionally used for discrete
tomographic reconstruction in order to obtain a recti-
linear representation of the original density function.
This intermediate representation is then usually resam-
pled by many volume visualization algorithms. How-
ever, the formula in Equation 2 can also be considered
as a resampling scheme to interpolate a density value
at an arbitrary sample point. Therefore, it is unneces-
sary to generate an intermediate rectilinear representa-
tion by discrete tomographic reconstruction. Further-
more, each resampling step usually causes a loss of in-
formation. By avoiding the unnecessary intermediate
grid representation, the quality of reconstruction can be
improved. Previous reconstruction techniques assume
that accurate samples are available at the grid points. In
practice these samples are obtained by tomographic re-
construction. In order to maintain the same accuracy
at any arbitrary sample location, we apply the Filtered
Back-Projection to reconstruct the density value.

θ

x

y

f(x,y)
P (t)
θ

t

Figure 4: Parallel projection for a specific angleθ .

3.2 Derivative Estimation

In order to process or render volumetric data in many
cases derivatives of the original density function are nec-
essary. For example, for volume rendering the estimated
gradients are used as surface normals to perform shad-
ing. In case of a grid based representation the straight-
forward way is to estimate the derivatives from a certain

voxel neighborhood. To determine the gradient, com-
mon methods, such as intermediate difference gradient,
central difference gradient, or higher order gradient esti-
mation schemes are applied. In our case, computing the
derivatives from a certain 3D neighborhood of samples
requires to perform a large number of back-projections.
Especially for higher order gradient estimation schemes,
which need a large neighborhood of samples, the com-
putational costs would be significantly high. However,
the Filtered Back-Projection reconstruction scheme can
also be exploited to compute derivatives.

For example the partial derivativẽfx according to vari-
ablex can be expressed by using Newton’s difference
quotient:

f̃x =
∂ f̃ (x,y)

∂x
= lim

∆x→0

1
∆x

(
π
K

(
K

∑
i=1

Qθi (xcosθi +ysinθi)

−
K

∑
i=1

Qθi ((x+∆x)cosθi +ysinθi)))

Substitutingti := xcosθi +ysinθi we obtain:

f̃x = lim
∆x→0

1
∆x

(
π
K

(
K

∑
i=1

Qθi (ti)−
K

∑
i=1

Qθi (∆xcosθi + ti)))

= lim
∆x→0

1
∆x

(
π
K

K

∑
i=1

Qθi (ti)−Qθi (∆xcosθi + ti))

=
π
K

K

∑
i=1

lim
∆x→0

1
∆x

(Qθi (ti)−Qθi (∆xcosθi + ti))

The term

lim
∆x→0

1
∆x

(Qθi (ti)−Qθi (∆xcosθi + ti)) (3)

is the partial derivative of the projectionsQθi , but scaled
with cosθi . We can therefore calculate the partial
derivative f̃x directly as sum of scaled derivatives of the
projection data. Analogously, taking the difference quo-
tient with respect toy we obtain:

f̃y =
∂ f̃ (x,y)

∂y
=

π
K

K

∑
i=1

lim
∆y→0

1
∆y

(Qθi (ti)−Qθi (∆ysinθi +ti))

It can be seen that applying Newton’s difference quo-
tient directly on the filtered projections is equivalent to
applying Newton’s difference quotient for the 2D den-
sity function f (x,y). Moreover, any higher order deriva-
tive can be obtained by applying Newton’s difference
quotient multiple times.
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Using Filtered Back-Projection for gradient estimation
we expect higher accuracy than using the traditional gra-
dient estimation schemes on the rectilinear grid. Con-
sider central differences on the continuous reconstruc-
tion from a rectilinear representation. In order to calcu-
late the gradient at an arbitrary sampling point six addi-
tional samples have to be interpolated. As interpolation
usually causes loss of information, the introduced er-
rors are accumulated in the estimated gradients. In con-
trast, using Filtered Back-Projection, the density values
at the additional sample points are as accurate as the grid
points. Therefore, no interpolation error is introduced.

3.3 Hierarchical Space Partitioning

For almost all volumetric processing approaches a hier-
archical space partitioning data structure is essential for
efficient processing. The performance gain which can
be achieved with such a data structure mainly depends
on its granularity. An octree is one of the most widely
used data structure for organizing three-dimensional
space. An octree is based on the principle of hierar-
chical space partitioning. Each node of the octree repre-
sents a cuboid cell. In a min-max octree for volumetric
data each node contains the minimum and maximum of
the enclosed data. The minimum and maximum value
of an octree cell, in case of grid-based volumetric data,
depends on the used data reconstruction method. The
most widely used data reconstruction method is trilinear
interpolation. The convex nature of trilinear interpola-
tion ensures that all function values within a cuboid are
bounded by the maximal and minimal values at the grid
positions.

Octree

cell  C

θiC

θi
P

Figure 5: Projected octree cellC onto projectionPθi .

This convexity condition does not hold for reconstruc-
tion based on the Filtered Back-Projection. However,
it is still possible to generate a min-max octree for
projection-based volumetric data. Consider an octree
cellC projected onto all filtered projectionsPθi , see Fig-
ure 5. The resulting projections ofC are referred to as
Cθi . According to Equation 2 an upper bound of the
maximum value contained in the octree cellC can be
determined by:

maxC f̃ ≤
π
K

K

∑
i=1

maxCθi f̃
(4)

where
C f̃ =

{
v = f̃ (~x)|~x∈C⊆ℜ3}

are all possible function values within the enclosing
cuboid of cellC and

Cθi f̃
=

{
v = Qθi (~t)|~t ∈Cθi ⊆ℜ2}

are all projection values within the enclosing rectangle
of the projected cellC onto the projectionPθi . Analo-
gously a lower bound of the minimum of the octree cell
C can be determined by:

minC f̃ ≥
π
K

K

∑
i=1

minCθi f̃
(5)

The algorithm to generate an octree, using a bottom-up
approach, for projection-based volumetric data is as fol-
lows:
Starting with a root cell, which encloses the entire vol-
umetric function defined by the projections, we recur-
sively, subdivide the octree cells. Once we reach a de-
sired octree depth we compute the maximum respec-
tively the minimum using Equation 4 and 5. These val-
ues are then propagated to the higher octree levels. In-
stead of propagating these minimums and maximums to
the higher levels, it would have been also possible to
compute the minimum and maximum directly for each
of these higher levels using Equation 4 and 5. However,
this would lead to a more conservative approximation.
Although this space partitioning is a conservative ap-
proximation, it works very well in practice, as shown in
Figure 6.

4 Implementation

In Section 3 we presented all the necessary components
for D2VR. First, in Section 3.1 we presented an ap-
proach for data reconstruction at arbitrary sample po-
sitions. Following, in Section 3.2 we showed how to
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Figure 6: Octree up to depth 8 of the stag beetle. Red octree cells are classified as visible.

determine gradients directly out of the filtered projec-
tions at arbitrary sample positions. In Section 3.3 we
presented a hierarchical space partitioning data structure
for projection-based volumetric data, which is used in
the following as acceleration structure for D2VR. All
these approaches do not employ an intermediate grid
representation.

We implemented a CPU-based as well as a GPU-based
prototype for orthographic and perspective projection.
The CPU implementation is based on a raycasting ap-
proach. For each image pixel of the image plane, rays
are cast through the volumetric space enclosed by the
filtered projections. At each resample location the un-
derlying 3D density function is reconstructed accord-
ing to Equation 2 and gradient estimation is done us-
ing Equation 3. The final color and opacity of the im-
age pixel is determined by the over-operator [18] in
front-to-back order. The GPU version is implemented
in C++ and Cg using OpenGL. We are aware that the
current Cg compiler does not always produce optimal
code. We did not manually optimize the code by us-
ing assembly as this is a proof of concept implemen-
tation. We implemented D2VR on the GPU (NVidia
GForce 6800 GT, 256 MB) utilizing texture-based vol-
ume rendering with view-aligned slices in combination
with filtered projection textures. All the filtered projec-
tions are linearly stored in a 3D texture. Basically we
compute texture slices parallel to the viewing plane. As
the newest NVidia hardware supports dynamic branch-
ing, the slices are directly computed in afor-loop using
Equation 2 from all the filtered projections. The same
is done for the gradient computation using Equation 3.
The volumetric space enclosed by the filtered projec-
tions is thereby cut by polygons parallel to the viewing
plane. The polygons are then projected by the graphics

hardware onto the image plane and composited using
alpha blending. In order to accelerate the rendering pro-
cess, we utilized the octree described in Section 3.3. We
project all visible octree cells onto the image-plane. The
resulting z-buffer image is then used for early z-culling,
a capability of modern hardware, implementing empty
space skipping. In average, for example, we measured
for 128 projections (1282 sized) using a 2562 view-port
four seconds per frame for an iso-surface rendering. The
performance benefit depends on the granularity of the
octree. Further optimization, such as early ray termina-
tion, are not employed due to the lack of graphics hard-
ware support. In future we will investigate alternative
acceleration approaches in order to provide fully inter-
active projection-based volume rendering.

5 Results

In order to show the differences between projection-
based and grid-based data reconstruction and gradi-
ent estimation we simulated the computed tomographic
scanning process. We scanned several different density
functions, such as the Marschner & Lobb function, a
stag beetle, and a carp. The Marschner & Lobb func-
tion is analytically defined. For the other data sets, an
analytical representation is not given, therefore we took
high resolution grids in combination with trilinear in-
terpolation as ground truth. The Marschner & Lobb
function is scanned taking 64 projections, each projec-
tion with a resolution of 642. From this projections a
grid is reconstructed, using the same amount of sam-
ples (643). Additionally we also reconstructed a grid
with eight times more samples (1283). Furthermore
we computed an iso-surface directly from the analytical
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(d)

(a) (b) (c)

(e)

Figure 10: CT scan of Carp (256x256x512): (a) DVR of original grid. (b) DVR of a 128x128x256 grid, recon-
structed from 128 filtered projections, each projection with a resolution of 128x256. (c) D2VR of projection-based
volumetric data (128 projections, each projection with a resolution of 128x256). (d) Zoom in of DVR. (e) Zoom
in of D2VR.

Marschner & Lobb function. Figure 7a shows the differ-
ences between the analytical value and the reconstructed
value using trilinear interpolation on the grid (643) and
Figure 7b shows the differences between the analytical
value and the reconstructed value using Filtered Back-
Projection. To encode the data reconstruction error on
the iso-surface a color coding is applied. Green encodes
low error, on the other hand red encodes higher errors.
Figure 8a shows the differences in degrees between the
analytically computed gradients and the estimated gra-
dients using central difference gradient estimation. Fig-
ure 8b shows the differences in degrees between the an-
alytically computed gradients and the estimated gradi-
ents using our new projection-based gradient estimation
method. Figure 9 shows a comparison of iso-surface
renderings of the Marschner & Lobb function: Figure 9a
shows an analytical rendering. Figure 9b shows DVR of
the 643 grid. Figure 9c shows DVR of the eight times
bigger grid (1283). And finally in Figure 9d our D2VR
from 64 filtered projections, each projection with a reso-
lution of 642 is shown. Furthermore, we rendered a stag

0% 100%5%10% 50%

(a) (b)

Figure 7: Color encoded differences between analytical
value and (a) the reconstructed value using trilinear in-
terpolation on the grid (643), (b) the reconstructed value
using Filtered Back-Projection.
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0° 20° 45° 90° 180°

(a) (b)

Figure 8: Color encoded differences in degrees between
analytically computed gradients and (a) the estimated
gradients using central difference gradient estimation
on the grid, (b) the estimated gradients using our new
projection-based gradient estimation method.

beetle and a carp, In Figure 1, and Figure 10 the dif-
ferences between rendering from projection-based and
grid-based volumetric data can be seen. Additionally
for all the shown data sets we reconstructed a 1283 grid
from the filtered projections. From this grid as well as
from the filtered projections we also reconstructed a ro-
tated grid. In Table 1 the root mean squared data re-
construction error with respect to the analytical function
respectively to the corresponding high resolution grid in
combination with trilinear interpolation is shown.

Data RMS of RMS of filtered Ratio
grid projections

Marschner & Lobb 0.0624 0.0537 1.1620
Fish 37.5486 26.9216 1.3947
Stag beetle 80.2559 77.8378 1.0310

Table 1: Root Mean Squared (RMS) data reconstruction
error with respect to the analytical function respectively
to the corresponding high resolution grid in combination
with trilinear interpolation. Values for the Marschner
& Lobb data set are between zero and one, and for the
other data sets between zero and 4095. In column three
the ratio of column one and two is shown.

6 Conclusion and Future Work

In this paper a new direct volume-rendering paradigm
has been introduced. It has been shown that volumet-

(a)

(d)(c)

(b)

Figure 9: Comparison of an iso-surface of the
Marschner & Lobb function: (a) Analytically computed.
(b) DVR rendering of a 643 grid. (c) DVR rendering
of an eight times bigger grid (1283). (d) D2VR from
projection-based volumetric data (64 projections, each
projection with a resolution of 642). Grids are recon-
structed from 64 filtered projections, each projection
with a resolution of 642.

ric raw data measured as a set of projections can be di-
rectly rendered without generating an intermediate grid-
based volume representation by using tomographic re-
construction. As our method avoids an unnecessary and
lossy resampling step, it provides much higher image
quality than traditional direct volume-rendering tech-
niques do. Furthermore, our novel projection-based gra-
dient estimation scheme avoids the accumulation of in-
terpolation errors. Traditional methods ensure accurate
samples at the grid points, while the accuracy of inter-
mediate samples strongly depends on the quality of the
applied interpolation method. In contrast, our approach
provides an accurate data value for an arbitrary sample
position.

In order to accelerate D2VR we proposed a hierarchical
data structure for empty space skipping. Furthermore,
as the filtered projections can be interpreted as 2D tex-
tures, the conventional graphics cards can be exploited
to efficiently accumulate the contributions of the filtered
projections to view-aligned sampling slices. Inspite of
these optimizations, our volume-rendering method is
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still slower than previous ones. On the other hand, in the
last two decades, a huge research effort was spent to ac-
celerate traditional direct volume rendering, which was
far from interactivity in the beginning. As our approach
is a try to open a new research direction, the current per-
formance of our technique is not yet comparable to that
of a well developed technology.

Although our work was inspired by the practical tomo-
graphic reconstruction problem, its theoretical signifi-
cance is the demonstration of an alternative image-based
volume representation. In our future work we plan to
explore other gridless volume representations, which are
not necessarily related to the physical constraints of cur-
rent scanning devices. For example, in order to achieve
full uniformly distributed reconstruction quality, projec-
tion planes with uniformly distributed normals might
also be applied. Although the adaptation of the Filtered
Back-Projection algorithm to such a geometry requires
further research, it would lead to a direction independent
high-quality volume reconstruction scheme.
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