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(a)

Figure 1: CT scan of stag beetle (832x832x494): (a) DVR of original grid. @JFDof projection-based volu-
metric data (64 projections, each projection with a resolution 6§.6&) DVR of a 128 grid (d) DVR of a 64
grid. Grids are reconstructed from 64 filtered projections, each projection with a resolutioh of 64

Abstract the Filtered Back-Projection algorithm. Our method re-
moves an unnecessary and lossy resampling step from

Volume-rendering techniques are conventionally clas#ie classical volume rendering pipeline. Thus, it pro-

fied into two categories represented by direct and iides much higher accuracy than traditional grid-based

direct methods. Indirect methods require to transforf@sampling techniques do. Furthermore we also present

the initial volumetric model into an intermediate gecd novel high-quality gradient estimation scheme, which

metrical model in order to efficiently visualize it. Inis also based on the Filtered Back-Projection algorithm.

contrast, direct volume-rendering (DVR) methods cdrinally we introduce a hierarchical space partitioning

directly process the volumetric data. Modern 3D sca@pproach for projection-based volumetric data, which is

ning technologies, like CT or MRI, usually provide datéised to accelerate?@R.

as a set of samples on rectilinear grid points, which are

computed from the measured projections by discrete to-

mographic reconstruction. Therefore the set of these

reconstructed samples can already be considered ag% Categqnes:T ¢ I.4.5M[Imhage. Irzoigsslmg]:
intermediate volume representation. In this paper construction—Transform Methods; 1.4.10 [Image

introduce a new paradigm falirect direct volume ren- Processing]: VoIl_Jmetric Image Representatioq; .3.7
dering (C?VR), which does not require a rectilinear grid-°MPuter Graphics]: Three-dimensional Graphics and
at all, since it is based on an immediate processing %«Fallsm

the measured projections. Arbitrary samples for ray

casting are reconstructed from the projections by using

*e-mail: cseb@iit.bme.hu Keywords: Vo_Iume Rendering, Reconstruction, Fil-
Te-mail: {rautekgrimm|brucknefgroellef @cg.tuwien.ac.at tered Back-Projection



2 2 RELATED WORK

1 Introduction an intermediate geometrical model of an isosurface is
constructed from the volumetric model. This geomet-
Modern 3D scanning technologies, like Computed Teical model is then interactively rendered by, for exam-
mography (CT) or Magnetic Resonance Imaging (MRIple, conventional graphics hardware. In contrast, Direct
usually provide data values on rectilinear grid pointsolume Rendering (DVR) approaches, like ray casting
These data values are computed from measured gm-or splatting [24, 25] directly render the volumet-
jections by discrete tomographic reconstruction [19, Glc model without any intermediate representation. In
The set of the reconstructed data values (or samples) Bath cases an interpolation technique is applied to de-
be interpreted as a discrete representation of the undgfe data values between the rectilinear grid points. In
lying continuous phenomenon. In order to authenticalther words, a resampling of the discrete volume rep-
visualize the original continuous signal, it has to be agesentation is required. This resampling results in the
curately reconstructed from the discrete samples (ngt&ondoss of information in the traditional pipeline.

that such a signal reconstruction is differentiated from order to minimize the loss of information we propose

discrete 'Fomolgraphlc r.econs.tructljop). he original . to modify the traditional volume-rendering pipeline by
From a signal-processing point of view, the origina s'%"lmply removing an unnecessary resampling step (fol-

6w the green line in Figure 2). To render the underlying

if it is band-limited and the sampling frequency is abov&)ntinuous phenomenon, data samples at arbitrary sam-

the Nyquist limit [16]. Theoretically the perfect Contin_'ple points need to be defined, and for shading computa-

uous reconstruction is obtained by convolving the digs,'the corresponding gradients need to be determined.

crete volume representation with thiecfunction. The A< it will be shown. both tasks can be solved using di-

ilncfulnctpn is considered to bg(jtheltiest reconﬁltructlpgcuy the filtered projections. This eventually leads to
ermel, since It represents an ideal low-pass filter. alternative projection-based volume representation.

practice, however, it is difficult to convolve a discretephus there is no need to compute samples at regular
signal with thesinc kernel, because of its infinite sup- '

heref cal ion il th grid points by discrete tomographic reconstruction, and
port..T erefore practical reconstruction filters either ap consequence one resampling step (see Figure 2) is
proximate it or truncate it with an appropriate window;

g f ) 5 : Id sianal nnecessary. Traditional direct volume-rendering meth-
'r?g ll‘mCt'OH [11,’ 0]. |V|0I’60\|/.el’., real-world signals cag g rely on such an intermediate grid representation, so
ardly be considered band-limited. As a consequUenfe s ‘sense they are in fact indirect. In contrast, we
practical resampling results in a loss of information. -, aqent pyvRdirectly from the measured raw data. To
Figure 2 shows the signal-processing approach of iginguish from the common DVR the novel approach

traditional volume rendering pipeline (follow the reds (ofarred to aD?VR (pronunciation: [di-skwerd vi
line). The first step is the discrete tomographic recogy

struction of a rectilinear volume representation from the . ) . .
measured projections. Although there exist differelft Section 2 we review previous work related to discrete

algorithms for tomographic reconstruction, one of tH@mographic reconstruction and volume resampling. In
most popular techniques is the Filtered Back-Projectigfgction 3 our novel volume-rendering approach is in-
algorithm. It first performs high-pass filtering on thdroduced, where_|t IS eXP'a'”ed how to reponstruct P'ata
measured projections and afterwards the samples at @éges and.gradlent.s directly from the f_||tered projec-
tilinear grid points are computed by back-projecting tHiPNnS by using the Filtered Back-Projection algorithm.

filtered signals. As the projections are acquired by meadrthermore, in Section 3.3, we also present a hierar-
suring accumulated attenuation by a limited number Bfical space partitioning approach for projection-based
sensors, they are actually available as discrete repres&Hidmetric data. Section 4 describes the implementa-
tations of continuous projection functions. Therefoft®- Sec_uon_ > reporFs the res:ults. Flnal!y n Sectl_on 6
high-pass filtering is performed in discrete frequenépe contribution of thls paper is summarized and ideas
domain, so the result is also a discrete function. JA" future work are given.

the back-projection phase, however, the rectilinear grid

points are not necessarily projected exactly onto the dis-

crete samples of the filtered projections. Therefore fi Related Work

back-projection resampling is necessary, which results

in thefirst loss of information in the pipeline. In most of the practical volume-rendering applications,

The obtained rectilinear volume can be visualized specially in 3D medical imaging, the input data is usu-
different rendering techniques. Using indirect metlally generated from measured projections by using to-
ods, like the classical Marching Cubes algorithm [9fnographic reconstruction [19, 6, 15]. The set of projec-
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Figure 2: Data processing work flow of projection- and grid-based volume rendering. The red line corresponds to
the traditional volume rendering pipeline. It requires two resampling steps in order to visualize the data. First an
intermediate grid is resampled and then this grid is resampled again for rendering. The green line corresponds to
the projection-based volume rendering pipeline; the lossy first resampling step is avoided.

tions is referred to as the Radon transform of the origlyzed different reconstruction filters, both in terms of
inal signal. Therefore the tomographic reconstructi@ccuracy and computational cost [12, 11, 13, 14]. As
is, in fact, the inversion of the Radon transform. Ththe practical filters only approximate the ideal low-pass
inversion can be performed by using the classical Filker they result in either aliasing or smoothing [11],
tered Back-Projection [2] algorithm, which is based omhich can be interpreted as a loss of information.

the Fourier projection-slice theorem [6, 10]. Although

there exist alternative tomographic reconstruction teghs, frequent resampling tasks, like rotation, or up-
nigues like algebraic or statistical ones, Filtered Bacgampling, frequency-domain techniques can be alterna-
Projection is still the most popular method used in COMyely applied [8, 1, 3, 4, 21, 22]. In frequency do-
mercial CT scanners. main, it is exploited that a computationally expensive
The output of tomographic reconstruction is a discrespatial-domain convolution is replaced by a simple mul-
(or sampled) representation of the underlying contintiplication. Although the frequency-domain resampling
ous phenomenon. The samples are conventionally gaerethods generally provide higher accuracy than spatial-
erated on rectilinear grid points. The rectilinear grid ha®main methods do, they assume that the new samples
several advantages. For example, the sampled signaltwelne computed are also located at regular grid points.
be represented by 3D arrays, implicitly storing the loca-

tions of the samples. Furthermore, the neighborhogd o qer to avoid a lossy resampling step in the tradi-
of a certain sample can be efficiently addressed, whighna| yolume-rendering pipeline, we directly use the to-
is important for many volume-processing or volumggographic inversion in order to reconstruct the underly-
rendering algorithms. ing function at arbitrary sample positions. Therefore we
Nevertheless, in order to render the underlying continde not generate an intermediate rectilinear volume rep-
ous 3D function, data values need to be defined also besentation, but we directly process the filtered projec-
tween the rectilinear grid points. Teckernel as ideal tions as an alternative volume representation. Using this
reconstruction filter is impractical because of its infinitgridless or projection-based volume-rendering approach
extent. In practice it is approximated by filters of finitas a new paradigm, the same accuracy can be ensured at
support [11, 20]. Generally, the wider the support of trel the sample positions. In contrast, using the tradi-
reconstruction filter, the higher the quality of the recotional grid-based approach, accurate samples are avail-
struction. On the other hand, the wider the support able only at the grid points, while the accuracy of inter-
the filter, the higher the computational cost of a spatiahediate samples depends on the quality of the applied
domain convolution. Therefore several researchers @&mperfect reconstruction filter.



4 3 D?VR

3 D2VR The density functiorf (x,y) can be expressed as:

We present BVR based on a raycasting approach. In fxy) = /40 [mF(“>V)eJZH(UX+W)d“dV

order to perform raycasting the underlying 3D volumet- .

ric function needs to be reconstructed at arbitrary resawhere F(u,v) denotes the two-dimensional Fourier
pling locations. In case the data is given on a rectilinetiansform of the density functiofi(x,y). By moving
grid the reconstructed function value is computed frofrom a cartesian coordinate system in the frequency do-
a close neighborhood of samples as shown in Figure B&in to a polar coordinate system, i.e.= wcos0,

In contrast to that, for raycasting directly performed on= wsin8, anddudv= wdwdd, we obtain:

the filtered projections the reconstructed function value

is computed frpm the filte_red projections at the corre- (Xy) = /2"/‘”':(\/\,7 e)ejZT,W(xcose+ysin9)Wde9
sponding positions, see Figure 3b. Furthermore, gradi- o Jo

ents at these resample locations need to be determined

in order to perform shading. The whole reconstructidhwe considerd from 0 to 7, the integral can be split as
mechanism is described in the following. follows:

Resample location

T o ) -
f(x,y) = /0 /0 F(w, 9)ej27‘1W(xcos@+ysmB)WdWCB

Grid Projections
I ® e +/n/ F(We+n_)ej2nW(xcos(9+n)+ysin(9+rr))wdwde
I 0 Jo
) O SinceF(w, 0+ m) = F(—w,0), the above expression
can be written as:
T e
_ j2mwt

I - o f(xy) /0 [/mF(W,G)We dw| d6
I O

wheret = xcos6 +ysin6. By substitutingSy (w) for the
@) () two-dimensional Fourier transforiii(w,8) the above
integral can be expressed as:

Figure 3: (a) Resampling along a ray on rectilinear vol- f _ /"/00 el2™tq\nde
umetric data. (b) Resampling along a ray directly from (y) 0 _wse(w) w W

the filtered projections . ] o .
According to the Fourier projection-slice theor&g{w)

is the Fourier transform d®(t). Let us define:

3.1 Datareconstruction Qo(t) = [ : Sp (W) |w] eZ™dw (1)

Data reconstruction from projection-based volumetrighich is the inverse Fourier transform 8 (W) - ||

data requires Filtered Back-Projection. For simplicitxs multiplication in frequency domain corresponds to a
we illustrate the Filtered Back-Projection in 2D basegbnyolution in spatial domain, according to Equation 1,
on a computed tomography scanning process using @f(t) is obtained by high-pass filtering the measured
thographic projection. Parallel projections are taken ByqiectionPy (t). Other filters to reduce artifacts result-

measuring a set of parallel rays for a number of diffefg from reconstruction can be applied, see [6].

ent angles. A projection is formed by combining a s . , . o
of line integrals. The whole projection is a coIIectiogﬁpgigiitﬁ:liézebip density functiof(x,y) is discretely

of parallel ray integrals as is given B(t) for a con-
stantf, see Figure 4. The line integrals are measured by ~ T K
moving an x-ray source and detector along parallel lines f(x,y) = f(X,y) = K ZQ@, (xcosB +ysing) (2)
on opposite sides of the object. i=

The Filtered Back-Projection can be derived, using thehereQg are the filtered projections. Thus, according
Fourier projection-slice Theorem as follows: to Equation 2 the density function can be reconstructed



3.2 Derivative Estimation 5

from a fixed number of projections. The Filtered Backroxel neighborhood. To determine the gradient, com-
Projection algorithm is conventionally used for discret@on methods, such as intermediate difference gradient,
tomographic reconstruction in order to obtain a rectientral difference gradient, or higher order gradient esti-
linear representation of the original density functiomation schemes are applied. In our case, computing the
This intermediate representation is then usually resaderivatives from a certain 3D neighborhood of samples
pled by many volume visualization algorithms. Howrequires to perform a large number of back-projections.
ever, the formula in Equation 2 can also be considerBdpecially for higher order gradient estimation schemes,
as a resampling scheme to interpolate a density valich need a large neighborhood of samples, the com-
at an arbitrary sample point. Therefore, it is unnecgsudtational costs would be significantly high. However,
sary to generate an intermediate rectilinear represeritee Filtered Back-Projection reconstruction scheme can
tion by discrete tomographic reconstruction. Furthesdso be exploited to compute derivatives.

more, each resampling step usually causes a loss of in- . . . .
formation. By avoiding the unnecessary intermediaf®@’ €xample the partial derivativi according to vari-

grid representation, the quality of reconstruction can B2!€X €an be expressed by using Newton's difference
improved. Previous reconstruction techniques assufftient:
that accurate samples are available at the grid points. In ~ K
practice these samples are obtained by tomographic rg-— 9f(%¥) _ ;o L H(ZQG. (XCOSB +ysing)
i=

construction. In order to maintain the same accuracy X a0 A K
at any arbitrary sample location, we apply the Filtered K
Back-Projection to reconstruct the density value. - ZlQel ((x+Ax)cosb +-ysing)))
i=
AY

Substituting; := xcos6, 4+ ysing, we obtain:

fxy) f= lim 1(”(%1(?9. (ti)iQe. (Axcosf +1i)))

Ax—0 AX K
\ ~~~ | 1 1 K . A 6 .
(Ri;Qe.(tl)—Qe.( XCcosB +1i))

= |lim —
Ax—0 AX

B

N

)
N

T K . 1
= K I;AI)I(ToB((QQ (tl) - QG, (AXCOSGI -l-'[|))
The term

. 1
A')'(TO Ax (Qa (ti) — Qg (Axcos8 +ti)) 3)

is the partial derivative of the projectio, but scaled
with cosfi. We can therefore calculate the partial
derivative fy directly as sum of scaled derivatives of the
projection data. Analogously, taking the difference quo-

Figure 4: Parallel projection for a specific angle  tient with respect ty we obtain:

y= =

m
3.2 Derivative Estimation dy K &ay—0Ay

(Qg (ti) — Qg (AysinG +t;))

In order to process or render volumetric data in matiycan be seen that applying Newton’s difference quo-
cases derivatives of the original density function are ndcnt directly on the filtered projections is equivalent to
essary. For example, for volume rendering the estimatgaplying Newton’s difference quotient for the 2D den-
gradients are used as surface normals to perform shsitl functionf (x,y). Moreover, any higher order deriva-
ing. In case of a grid based representation the straigtite can be obtained by applying Newton’s difference
forward way is to estimate the derivatives from a certaguotient multiple times.



6 4 IMPLEMENTATION

Using Filtered Back-Projection for gradient estimatiomhis convexity condition does not hold for reconstruc-
we expect higher accuracy than using the traditional gtaen based on the Filtered Back-Projection. However,
dient estimation schemes on the rectilinear grid. Coib-is still possible to generate a min-max octree for
sider central differences on the continuous reconstrymejection-based volumetric data. Consider an octree
tion from a rectilinear representation. In order to calceell C projected onto all filtered projectioi,, see Fig-
late the gradient at an arbitrary sampling point six addire 5. The resulting projections @fare referred to as
tional samples have to be interpolated. As interpolati@a. According to Equation 2 an upper bound of the
usually causes loss of information, the introduced enaximum value contained in the octree dglican be
rors are accumulated in the estimated gradients. In coletermined by:

trast, using Filtered Back-Projection, the density values

at the additional sample points are as accurate as the grid < n K

points. Therefore, no interpolation error is introduced. maxCy < K i;maxcelf “)
. ) L where

3.3 Hierarchical Space Partitioning Cr={v="f(RIxeccO?

For almost all volumetric processing approaches a hiéfe all possible function values within the enclosing
archical space partitioning data structure is essential fstboid of cellC and

efficient processing. The performance gain which can . )

be achieved with such a data structure mainly depends Cor = {v=Qa(D)[fcCq C D}

on its granularity. An octree is one of the most widel L - .
éj all projection values within the enclosing rectangle

[ the projected celC onto the projectiorPs. Analo-
pép_usly a lower bound of the minimum of the octree cell
B can be determined by:

used data structure for organizing three-dimensio
space. An octree is based on the principle of hier
chical space partitioning. Each node of the octree rep
sents a cuboid cell. In a min-max octree for volumetr
data each node contains the minimum and maximum of 1 K

the enclosed data. The minimum and maximum value minCy > K Zlmi”CG.r 5)
of an octree cell, in case of grid-based volumetric data, i=

e o e e el recontucon el 8 gt togenerate an o, using a ot up
: i . ) gpproach, for projection-based volumetric data is as fol-
interpolation. The convex nature of trilinear interpolg-

tion ensures that all function values within a cuboid al
bounded by the maximal and minimal values at the g
positions.

QWS:
%arting with a root cell, which encloses the entire vol-
"metric function defined by the projections, we recur-
sively, subdivide the octree cells. Once we reach a de-
sired octree depth we compute the maximum respec-
tively the minimum using Equation 4 and 5. These val-
ues are then propagated to the higher octree levels. In-
stead of propagating these minimums and maximums to
the higher levels, it would have been also possible to
compute the minimum and maximum directly for each
of these higher levels using Equation 4 and 5. However,
this would lead to a more conservative approximation.
Although this space partitioning is a conservative ap-
proximation, it works very well in practice, as shown in
Figure 6.

4 Implementation

In Section 3 we presented all the necessary components
for D°VR. First, in Section 3.1 we presented an ap-
) . o proach for data reconstruction at arbitrary sample po-
Figure 5: Projected octree c@lonto projectiorPs.  sjtions. Following, in Section 3.2 we showed how to



Figure 6: Octree up to depth 8 of the stag beetle. Red octree cells are classified as visible.

determine gradients directly out of the filtered projetvardware onto the image plane and composited using
tions at arbitrary sample positions. In Section 3.3 wadpha blending. In order to accelerate the rendering pro-
presented a hierarchical space partitioning data structoess, we utilized the octree described in Section 3.3. We
for projection-based volumetric data, which is used roject all visible octree cells onto the image-plane. The
the following as acceleration structure foP\ZR. All  resulting z-buffer image is then used for early z-culling,
these approaches do not employ an intermediate ggidapability of modern hardware, implementing empty
representation. space skipping. In average, for example, we measured
for 128 projections (128sized) using a 256view-port
We implemented a CPU-based as well as a GPU-basegr seconds per frame for an iso-surface rendering. The
prototype for orthographic and perspective projectioperformance benefit depends on the granularity of the
The CPU implementation is based on a raycasting atree. Further optimization, such as early ray termina-
proach. For each image pixel of the image plane, raggn, are not employed due to the lack of graphics hard-
are cast through the volumetric space enclosed by thgre support. In future we will investigate alternative
filtered projections. At each resample location the ugcceleration approaches in order to provide fully inter-
derlying 3D density function is reconstructed accorgctive projection-based volume rendering.
ing to Equation 2 and gradient estimation is done us-
ing Equation 3. The final color and opacity of the im-
age pixel is determined by the over-operator [18] i% Results
front-to-back order. The GPU version is implemente
in C++ and Cg using OpenGL. We are aware that the
current Cg compiler does not always produce optimia order to show the differences between projection-
code. We did not manually optimize the code by usased and grid-based data reconstruction and gradi-
ing assembly as this is a proof of concept implemeant estimation we simulated the computed tomographic
tation. We implemented ¥¥R on the GPU (NVidia scanning process. We scanned several different density
GForce 6800 GT, 256 MB) utilizing texture-based vofunctions, such as the Marschner & Lobb function, a
ume rendering with view-aligned slices in combinatiostag beetle, and a carp. The Marschner & Lobb func-
with filtered projection textures. All the filtered projection is analytically defined. For the other data sets, an
tions are linearly stored in a 3D texture. Basically wanalytical representation is not given, therefore we took
compute texture slices parallel to the viewing plane. Aégh resolution grids in combination with trilinear in-
the newest NVidia hardware supports dynamic branderpolation as ground truth. The Marschner & Lobb
ing, the slices are directly computed irica-loop using function is scanned taking 64 projections, each projec-
Equation 2 from all the filtered projections. The samt@®n with a resolution of 64 From this projections a
is done for the gradient computation using Equation @id is reconstructed, using the same amount of sam-
The volumetric space enclosed by the filtered projegles (64). Additionally we also reconstructed a grid
tions is thereby cut by polygons parallel to the viewingith eight times more samples (138 Furthermore
plane. The polygons are then projected by the graphies computed an iso-surface directly from the analytical
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(d)

Figure 10: CT scan of Carp (256x256x512): (a) DVR of original grid. (b) DVR of a 128x128x256 grid, recon-
structed from 128 filtered projections, each projection with a resolution of 128x2562\ bf projection-based
volumetric data (128 projections, each projection with a resolution of 128x256). (d) Zoom in of DVR. (€) Zoom
in of D?VR.

Marschner & Lobb function. Figure 7a shows the diffe
ences between the analytical value and the reconstruc
value using trilinear interpolation on the grid &4nd
Figure 7b shows the differences between the analyti
value and the reconstructed value using Filtered Bac
Projection. To encode the data reconstruction error -
the iso-surface a color coding is applied. Green enco¢ %
low error, on the other hand red encodes higher errg %,
Figure 8a shows the differences in degrees between &8
analytically computed gradients and the estimated gra- (a) (b)
dients using central difference gradient estimation. Fig-
ure 8b shows the differences in degrees between the
alytically computed gradients and the estimated gradi-
; L . 0% 5%10% 50% 100%
ents using our new projection-based gradient estimation
method. Figure 9 shows a comparison of iso-surface

r(;nderings of tlhe_z M;’;\rschngr & qub functiot?: Figure 9ﬁ'igure 7: Color encoded differences between analytical
shows an analytical rendering. Figure 9b shows DVR 91,6 anq () the reconstructed value using trilinear in-

the 64 grid. Figure 9c shows DVR of the eight time§ ; :
_ _ _ > PV erpolation on the grid (63, (b) the reconstructed value
bigger grid (128). And finally in Figure 9d our BVR using Filtered Back-Projection.

from 64 filtered projections, each projection with a reso-
lution of 64 is shown. Furthermore, we rendered a stag




Figure 8: Color encoded differences in degrees betwe
analytically computed gradients and (a) the estima
gradients using central difference gradient estimati

on the grid, (b) the estimated gradients using our néw
projection-based gradient estimation method. ©

beetle and a carp, In Figure 1, and Figure 10 the dffigure 9: Comparison of an iso-surface of the
ferences between rendering from projection-based avidrschner & Lobb function: (a) Analytically computed.
grid-based volumetric data can be seen. Additionallly) DVR rendering of a 62 grid. (c) DVR rendering
for all the shown data sets we reconstructed &Rl of an eight times bigger grid (138 (d) D’VR from
from the filtered projections. From this grid as well agrojection-based volumetric data (64 projections, each
from the filtered projections we also reconstructed a rprojection with a resolution of 4. Grids are recon-
tated grid. In Table 1 the root mean squared data &ructed from 64 filtered projections, each projection
construction error with respect to the analytical functiogith a resolution of 62

respectively to the corresponding high resolution grid in

combination with trilinear interpolation is shown. ) o )
ric raw data measured as a set of projections can be di-

Data RMS of | RMS offiltered| RatRetly rendered without generating an intermediate grid-
grid projections based volume representation by using tomographic re-
Marschner & Lobbl  0.0624 0.0537 | 1.162@nstruction. As our method avoids an unnecessary and
Fish 37.5486 26.9216| 1.39@gsy resampling step, it provides much higher image
Stag beetle 80.2559 77.8378| 1.03qwality than traditional direct volume-rendering tech-

niques do. Furthermore, our novel projection-based gra-
Table 1: Root Mean Squared (RMS) data reconstructidient estimation scheme avoids the accumulation of in-
error with respect to the analytical function respectivetgrpolation errors. Traditional methods ensure accurate
to the corresponding high resolution grid in combinaticamples at the grid points, while the accuracy of inter-
with trilinear interpolation. Values for the Marschnemediate samples strongly depends on the quality of the
& Lobb data set are between zero and one, and for tgplied interpolation method. In contrast, our approach
other data sets between zero and 4095. In column thpeevides an accurate data value for an arbitrary sample
the ratio of column one and two is shown. position.

In order to accelerate4¥R we proposed a hierarchical
data structure for empty space skipping. Furthermore,
as the filtered projections can be interpreted as 2D tex-
6 Conclusion and Future Work tures, the conventional graphics cards can be exploited
to efficiently accumulate the contributions of the filtered
In this paper a new direct volume-rendering paradigpmojections to view-aligned sampling slices. Inspite of
has been introduced. It has been shown that volumiitese optimizations, our volume-rendering method is
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still slower than previous ones. On the other hand, in thg8] Q. Chen, R. Crownover, and M.Weinhous. Sub-
last two decades, a huge research effort was spent to ac- unity coordinate translation with Fourier trans-

celer

ate traditional direct volume rendering, which was

far from interactivity in the beginning. As our approach

is a try to open a new research direction, the current per-
formance of our technique is not yet comparable to tha[t4]
of a well developed technology.

Although our work was inspired by the practical tomo-
graphic reconstruction problem, its theoretical signifi-

canc

e is the demonstration of an alternative image-baséel

volume representation. In our future work we plan to
explore other gridless volume representations, which are

notn

ecessarily related to the physical constraints of CLJ-

full uniformly distributed reconstruction quality, projec-
tion planes with uniformly distributed normals might [7]

also

be applied. Although the adaptation of the Filtered

Back-Projection algorithm to such a geometry requires
further research, it would lead to a direction independerﬁ3
high-quality volume reconstruction scheme. ]
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